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Abstract: In this work, the spatial and temporal distributions of small 

thermal and electromagnetic perturbations in a plane semi-infinite superconducting 

sample are studied. Based on a system of equations for temperature, magnetic 

induction, and vortex motion, a dispersion relation was obtained that determines 

the growth (or decay) increment of small perturbations. It was shown that, under 

certain conditions, depending on the values of the parameters of the system, flux 

jumps of the magnetic flux is observed. On the other hand, the phenomenon of 

magnetic flux oscillations - the oscillation of vortex matter as a result of 

thermomagnetic instability of the critical state in a superconductor is theoretically 

investigated. The spatial and temporal distributions of small thermal and 

electromagnetic perturbations in a plane semi-infinite superconducting sample are 

studied. Based on the system of equations for temperature, magnetic induction, and 

vortex motion, a dispersion relation was obtained that determines the growth (or 

decay) increment of small perturbations. It was shown that, under certain 

conditions, depending on the values of the parameters of the system, jumps - 

oscillations of the magnetic flux can be observed. 

Key words: superconductors, small perturbations, flux  jumps, vortex, critical 

state. 
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The phenomenon of magnetic flux jumps as a result of thermo magnetic 

instability of the critical state in a superconductor is theoretically investigated [1]. 

The spatial and temporal distributions of small thermal and electromagnetic 

perturbations in a plane semi-infinite superconducting sample are studied. Based 

on the system of equations for temperature, magnetic induction, and vortex motion, 

a dispersion relation was obtained that determines the growth (or decay) increment 

of small perturbations. It was shown that, under certain conditions, depending on 

the values of the parameters of the system, flux jumps of the magnetic flux can be 

observed. 

Since the discovery of this phenomenon in the 1960s, thermomagnetic instability 

caused by flux jump has been studied in superconducting slabs, bulk, and 

films. Based on the critical state model, a theory has been proposed to explain the 

flux jump of an infinite superconducting slab subjected to an external magnetic 

field. The total magnetic flux in the superconductor changes with the increase in 

the applied field. This will induce a dissipation of heat, and thus, the shielding 

ability of the magnetic field is reduced in the superconductor. The reduction of 

shielding ability will also lead to the motion of magnetic flux and more heat. This 

positive feedback can trigger thermomagnetic instability, further causing flux 

jump. The flux jump and flux avalanche can lead to the abrupt rise of temperature 

in the superconducting bulk and film, which has also been verified in MgB2 by 

experiment. Generally speaking, flux jump and flux avalanches must be avoided 

during safe operation of the bulk in order to decrease the likelihood of destruction. 

The flux jump or flux avalanche has been reported by many researchers. The flux 

jump is accompanied by the temperature rise, and the temperature may be much 

larger than the critical temperature. Thus, it is important to consider the mechanical 

behavior of bulk superconductors during the flux jump. 

Thus, the flux jump can lead to the degradation of performance, which 

reduces thermal stability and seriously threatens the safe operation of the bulk 

superconductor. Furthermore, the temperature and electromagnetic field can both 

have a rapid change during the flux jump, which can generate large thermal stress 

and Lorentz force. Moreover, the large electromagnetic bodyforce is also able to 
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induce large mechanical deformation in the superconductor. It was reported that 

the thermal stress and electromagnetic stress may result in the fracture of the bulk 

superconductor. Thus, it is important to consider the mechanical behavior of bulk 

superconductors during the flux jump.  

BASIC EQUATIONS 

The distribution of magnetic induction, electric field, and transport current in 

the superconductor are determined by the following equation 

 

 0rot B j= m .                                                        (1) 

dB
rot E

dt
= .                                                      (2) 

Accordingly, the temperature distribution in the sample is determined by the heat 

conduction equation 

 

Ej]T)T([
dt

dT
)T(


 ,                                      (3) 

                                                             

where ν and κ  are the coefficients of heat capacity and thermal conductivity of the 

sample, respectively. Addiction Cj j (T,B,E)=  is determined by the following critical 

state equation 

 

Cj j (T,B) j(E)  . 

 

We will use the Bean model )TT(aj)T,B(jj 0C0eCC  , where eB is the value of 

the external magnetic induction; 
0C

0

TT

j
a


 ; 0j - equilibrium current density, 0T and 

CT - initial and critical temperature of the sample, respectively [1]. In the flow 

creep mode, the current-voltage characteristic of superconductors is nonlinear, due 

to the heat-activated motion of vortices [2]. The dependence j ( E ) in the flow 

creep mode is described by the expression [3] 
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jj 




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


 ,                                                      (4) 

where 0E is the value of the electric field strength at Cjj  ; the constant parameter n 

depends on the pinning mechanisms. In the case when n =1, relation (4) describes a 

viscous flow [1]. For sufficiently large values of n , the last equality defines Bean's 

critical state cjj . When 1< n <∞, relation (4) describes the nonlinear creep of the 

flow [4]. In this case, the differential conductivity is determined by the equality 

B

C

nE

j

Ed

jd
 



.                                                (5) 

According to equation (5), the differential conductivity increases with 

increasing background electric field 
BE and essentially depends on the value of the 

rate of change of magnetic induction according to the equality xBE EB
 . Let’s 

formulate the basic equations describing the dynamics of the development of 

thermal and electromagnetic disturbances for a simple case - a superconducting flat 

semi-infinite sample (x >0) 







 c2

2

j
dx

d

dt

d
,                                                (6) 
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

dt

d

dT

dj

dt

d

nE

j

dx

d cc
02

2

.                                         (7) 

 

We represent the solution of system (6), (7) in the form 

0

γt

t

c 0T(x, t) (T T ) (z)ed = - Q ,                                         (8) 

0

t

t

cE(x, t) E ε(z)e .

g

d =                                               (9) 

where γ is the eigenvalue problem to be determined. It can be seen from the last 

system of equations that the characteristic time for the development of thermal and 

electromagnetic perturbations of the order of - 0t /γ  [5]. We have introduced the 

following dimensionless parameters and variables 
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Let’s consider the problem within the adiabatic approximation, when 1 , i.e. 

[5], the diffusion of the magnetic flux occurs faster than the thermal diffusion. 

Then, we obtain the following equation in the quasi-stationary approximation 

2

2

d
z 0.

dz

Q
- Q =                                                  (10) 

Since, when deriving the last equation, we neglected thermal effects, only the 

electrodynamic boundary should be put in (10) 

 

d (0, t)
(1, t) 0, 0.

dt

Q
Q = =                                           (11) 

The stability criterion of the magnetic flux jumps is determined by the values of 

Re γ 0.  Then, using the second boundary condition (1) 0Q = , we obtain the 

following equation for determining the parameter γ  

2/3 n 2/3 nJ (a ) J (a )-=  

A nontrivial solution of the last equation, taking into account the boundary 

conditions (10), exists only for certain values 

2/3

1a =ρ γ . 

where 1a  are the roots of the characteristic Bessel function. After simple 

transformations, we obtain the following stability criterion for the flux jumps  

c c 0
c

ñ e

4 j (T T )
B

c j nB

p k -
=

& .                                        (12) 

It is easy to see that the threshold value of cB flux jump stability mainly depends on 

the type of background electric field initiated by a change in external magnetic 

induction b eE B  [6].  The value of cB  decreases monotonically with increasing of 

the external magnetic field induction rate in the sample.  
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2. The oscillation of vortex matter as a result of thermomagnetic instability 

Recently, great attention has been paid to the phenomenon of magnetic flux 

oscillations arising as a result of thermomagnetic instability in superconductors [7]. 

In the process of studying the dynamics of thermomagnetic instabilities, vibrational 

modes in the mixed state of a superconducting Nb-Ti sample were detected as a 

result of a catastrophic avalanche [8]. To explain the observed oscillation 

processes, a theoretical model was proposed that takes into account the inertial 

properties of vortex matter. These oscillation phenomena were interpreted as the 

result of the existence of a finite value of the effective mass of the vortex, i.e. 

oscillations can be considered as a manifestation of the inertial properties of vortex 

matter [9].  

We consider the phenomenon of magnetic flux oscillations - the oscillation 

of vortex matter as a result of thermomagnetic instability of the critical state in a 

superconductor is theoretically investigated. The spatial and temporal distributions 

of small thermal and electromagnetic perturbations in a plane semi-infinite 

superconducting sample are studied. Based on the system of equations for 

temperature, magnetic induction, and vortex motion, a dispersion relation was 

obtained that determines the growth (or decay) increment of small perturbations. It 

was shown that, under certain conditions, depending on the values of the 

parameters of the system, jumps - oscillations of the magnetic flux can be 

observed. 

The system of equations of macroscopic electrodynamics is used to simulate 

the evolution of temperature and electromagnetic field perturbations. The 

distribution of magnetic induction B (r, t)  and transport current j (r, t)  in a 

superconductor is given by the equation 

                      
4π

rot B= j
c

 .                                            (13) 

The relationship between the magnetic induction B (r, t)  and electric field E (r, t)   

is described by Maxwell's equations 

                         
1 dB

rot E=-
c dt

 ,                                            (14) 
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v

E= B
c

 .                                                (15) 

The equation of motion of the vortices can be written in the form  

                          L P

dV
m V+F F 0

dt
   ,                                 (16) 

where m is the mass of the vortex of unit length, L 0

1
F = j 

c
  is the Lorentz force,   

L c 0

1
F = j  

c
  is the pinning force, 0 C2

2

n

H
=

c ρ


  is the viscosity coefficient, 

nρ is the 

resistance in the normal state, 0

πhc

2e
   is the magnetic flux quantum, is the upper 

critical field [4]. In combining the relation (14) with Maxwell’s equations, we 

obtain a nonlinear diffusion equation for the magnetic flux induction B (r, t)  in the 

following form 

 
dB

v B
dt

                                                  (17) 

0 c

dv 1
m v=- (j-j ).

dt c
                                         (18) 

 

The temperature distribution in superconductor is governed by the heat conduction 

diffusion equation 

                           
dT

κ(T) T jE,
dt

                                           (19) 

 

where =ν(T)  and κ=κ(T)  are the heat capacity and thermal conductivity 

coefficients of the sample, respectively. We use the Bean model for the current 

density j(T, E, B) and assume that it does not depend on the magnetic field 

induction, C ej=j (B , T) , i.e.,  C 0 0j =j - a T-T  [5],   where eB  is the value of the external 

magnetic induction;  0 C 0a=j / T -T ; 0j   is the equilibrium current density, 0T and CT  

are the initial and critical temperature of the sample, respectively [6]. We assume 

that the external magnetic field B =(0, 0, eB )  is directed along the z axis and the 

magnetic field sweep rate eB =const is constant.  
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 RESULTS AND DISCUSSIONS 

Let us present a solution of equations (14)-(16) in the form 

    
eB=B b(x, t) ,         

0v=v v(x, t) ,                                                          (20) 

0T=T Θ(x, t) ,         

where 0T (x) , eB (x)  and 0v (x)  are the solutions to the unperturbed equations, which 

can be obtained within a quasi-stationary approximation. Substituting the above 

solution (18) into equations (14)-(17) we obtain the following system of 

differential equations 

 

d
2 ,

dt


                                                    (21) 

d db
=- ,

dt dx


                                              (22) 

db db d
b

dt dx dx

   
       
   

.                                   (23) 

 

where dimensionless parameters 0 e

2 2

cΦ B
μ=

4πη 2L
 and variables 

e C

B c B
b= =

B 4π j L
, 

2

e

4π 2ν
Θ=

c B
, 0t

v=V
L

, 
x

z=
L

, 0 e

2

0 0 C

cΦ Bt
τ=

t 4πη 2μ j L
  were introduced. Here e

C

Bc
L=

4π j
 is the 

depth of penetration of the magnetic field into the superconductor [7].  

We assume that the small thermal and magnetic perturbations has 

 (x,t), b(x,t), v(x,t) exp γt  , (where γ is the eigenvalue of the problem to be 

determined), we obtain from the system Eqs. (21)-(23) the following dispersion 

relations to determine the eigenvalue problem  

 

       
2

2

2

d b db
γ+ μ-2β + μ+1 γ + μ-1 β- μ-1 β b=0

dx dx
                      (24) 
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The instability of the magnetic front, as a rule [7-9], is determined by the 

positive values of the increment Re 0  . Then we can assume that the instability 

arises under the condition Re =0 . Analysis of the dispersion relation shows that 

the growth increment is positive Re 0   if the condition Cμ 2    is met. In this 

case 
Cμ  , the small perturbations increase with time and the magnetic flux front 

is unstable. In the case when the increment is negative Cμ  and any small 

perturbation will decay. At a critical value, the increment is zero  =0  [8]. 

In the particular case when μ = 1, the increment    is determined by the 

stability parameter β. Then, the stability criterion can be represented as β>1. In 

another particular case, when the thermal effects are insignificant (β=1), the 

following dispersion relation can be obtained 

  
2

2

d b db
μ + -1 μ+1 b=0

dx dx
                                      (25) 

 

Representing the solution of the dispersion equation (25) in the form 

-ikxb e  

we can obtain the dependence of the increment γ on the wave vector k. An analysis 

shows [7] that when k<kc=μ, the increment is positive and a small perturbation 

increases with time. For the values of the wave vector k>kc, the quantity γ is 

negative and the small perturbation decays exponentially. It can be shown [9], that 

for k = kc the increment is γ = 0. If the wave vector tends to zero k → 0 or infinity 

k → ∞, the quantity γ = 1 and a small perturbation increases. In this case, the 

quantity γ is determined by the relation 

 

2

1


 

 
. 
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For μ = 0, the value of the increment is γ = 0. For μ = 1, the value of γ = 1. 

The dependence of the growth rate of γ on the wave vector is shown in Fig. 1. for 

various values of the parameter μ. As μ increases, the parameter γ increases. At 

certain values of the parameter μ, magnetic flux jumps  are observed, which take 

into account the inertial properties of the vortices. 

CONCLUSION 

Thus, based on a system of equations for temperature, magnetic induction, 

and vortex motion, a dispersion relation was obtained that determines the growth 

(or decay) increment of small perturbations. It was shown that, under certain 

conditions, depending on the values of the parameters of the system, flux jumps of 

the magnetic flux are observed. The phenomenon of oscillation of the vortex 

matter as a result of thermomagnetic instability in a superconductor is theoretically 

investigated. The spatial and temporal distributions of small thermal and 

electromagnetic perturbations in a plane semi-infinite superconducting sample are 

studied. Based on the system of equations for temperature, magnetic induction, and 

vortex motion, a dispersion relation was obtained that determines the growth (or 

decay) increment of small perturbations. It was shown that, under certain 

conditions, depending on the values of the parameters of the system, jumps - 

oscillations of the magnetic flux is observed. 
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